
LLNL-CONF-669795

System Noise Revisited: Enabling
Application Scalability and Reproducibility
with Simultaneous Multithreading

E. A. Leon, I. Karlin, A. T. Moody

April 17, 2015

International Parallel and Distributed Processing Symposium
Chicago, IL, United States
May 23, 2016 through May 27, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



System Noise Revisited:

Enabling Application Scalability and Reproducibility with SMT

Edgar A. León, Ian Karlin, and Adam T. Moody

Livermore Computing

Lawrence Livermore National Laboratory

Livermore, CA, United States of America

Email: {leon,karlin1,moody20}@llnl.gov

Abstract—Despite significant advances in reducing system
noise, the scalability and performance of scientific applications
running on production commodity clusters today continue to
suffer from the effects of noise. Unlike custom and expensive
leadership systems, the Linux ecosystem provides a rich set of
services that application developers utilize to increase produc-
tivity and to ease porting. The cost is the overhead that these
services impose on a running application, negatively impacting
its scalability and performance reproducibility. In this work,
we propose and evaluate a simple yet effective way to isolate an
application from system processes by leveraging Simultaneous
Multi-Threading (SMT), a pervasive architectural feature on
current systems. Our method requires no changes to the oper-
ating system or to the application. We quantify its effectiveness
on a diverse set of scientific applications of interest to the U.S.
Department of Energy showing performance improvements of
up to 2.4 times at 16,384 tasks for a high-order finite elements
shock hydrodynamics application. Finally, we provide guidance
to system and application developers on how to best leverage
SMT under different application characteristics and scales.

Keywords-system noise; jitter; simultaneous multithreading;
SMT; scalability; reproducibility; parallel performance;

I. INTRODUCTION

A salient cause of performance degradation of many

parallel scientific applications at scale is system processes

(e.g. I/O daemons) interfering with application threads on

compute nodes. Because the application has no control over

when and where these system processes run, the interference

appears as noise to the application. We refer to system

noise as any process (hardware or software) that delays an

application’s execution and is not directly controlled by the

application. Although noise has been studied for over two

decades [1], more recent work [2], [3] identified noise as a

key limiter to the scalability of high-performance computing

(HPC) applications.

Significant research and development since then have vir-

tually eliminated noise on leadership capability systems such

as Sequoia1 at Lawrence Livermore National Laboratory

(LLNL). These gains, however, come with the high cost

associated with the research, development, and maintenance

1Sequoia ranks third on the Top500 list as of November 2015.

of a radically simplified operating system (OS) and special-

ized hardware. Commodity systems, on the other hand, are

composed at a fraction of the cost by using hardware and

software designed for mass consumer markets. Furthermore,

an open-source, community-developed solution like Linux is

used, which provides a rich set of services that application

developers utilize. Many day-to-day science applications

run on commodity systems. These systems, however, suffer

from system noise affecting the scalability and performance

reproducibility of applications.

Noise originates from the OS, parallel file system, re-

source manager, cache and network contention, etc. It al-

ready consumes a significant amount of execution time

on today’s commodity systems, and it can reach critical

proportions in next-generation clusters if left unchecked.

Rather than trying to eliminate noise, our work moves it

off the critical path. Our approach leverages simultaneous

multithreading (SMT), an architectural feature in the pro-

cessor that provides multiple hardware threads of execution

per core, to absorb noise and isolate an application from

system interference. Unlike core specialization, where a core

(or set of cores) is dedicated for system processing, our

approach allows an application to use all of the cores of a

node. As we show in this paper, this approach dramatically

improves synchronous operations and, ultimately, applica-

tion performance. Furthermore, these improvements are free

from an application’s perspective since, in many instances,

using the additional hardware threads for application work

would result in lower performance. In addition, our approach

does not require changes to the OS or the application. In

previous work [4] we observed that SMT can reduce noise

and provide further improvements over core specialization

using a well-known micro-benchmark for noise (FWQ).

The contributions of this work are as follows. First, we

identify the processes that are major contributors to noise

in a current large-scale commodity cluster. As the Linux

ecosystem changes over time, this characterization should

inform other HPC centers of the impact of these processes

in recent system software. Second, we demonstrate the ef-

fectiveness of our approach in reducing noise quantifying its

impact on synchronization operations, which are extremely



sensitive to noise. Third, we show that for a suite of parallel

scientific applications, representative of U.S Department of

Energy workloads, using SMT provides significant perfor-

mance benefits at no cost to the application. Furthermore,

our approach does not require changes to the OS or the

application. And, fourth, we analyze the tradeoff of using

SMT threads for application work versus system processing

and relate these results to application characteristics. The

goal of this analysis is to provide guidance to application

developers on how to best leverage SMT resources.

The paper is organized into the following areas. We start

by identifying and characterizing sources of noise on a

modern, large-scale Linux cluster (Sections II and III). Then,

we describe our SMT approach (Sections IV and V) and

apply it to synchronous operations (Section VI), known

to be sensitive to noise. Next, we analyze the impact of

our approach on a suite of HPC applications (Sections VII

and VIII), which, ultimately, determine the end-benefits of

this technique. Related work and conclusions complete the

paper (Sections IX and X).

II. EXECUTION ENVIRONMENT

All experiments in this paper were run on the cab machine

at LLNL. The cab system is a 1,296 node Linux cluster

with two Intel SandyBridge (Xeon E5-2670) processors and

32 GB of memory per node. Each processor has eight cores

with two hardware threads per core (Hyper-Threading). The

nodes are connected via an InfiniBand QDR (QLogic),

single-rail network. It runs the Tri-Lab Operating System

Software (TOSS). At the time the experiments were exe-

cuted, cab was running TOSS version 2.2, which is based on

Red Hat Enterprise Linux Server release 6.5. Each processor

has a theoretical peak memory bandwidth of 51.2 GB/s and

uses DDR3 memory at 1.6 GHz. The resource manager in

use is SLURM [5], [6] version 2.3.3.

III. SYSTEM NOISE

In this section, we identify and quantify the sources of

system noise. Our goal is to assess the amount of noise that

different system processes contribute at scale, where noise

is most significant. The most direct experiment would be

to execute a large-scale application that is susceptible to

noise and then disable processes one-by-one to measure the

effect each has on application performance. However, there

are many processes on a typical compute node–we counted

735 different system processes–which makes this approach

intractable.

Instead, we decided to filter the set of system processes

using single node tests. Picking a compute node that had

been running for several days, we sorted the system pro-

cesses by the amount of CPU time each had accumulated–

our assumption being that the noisiest processes are those

that use the most CPU time. Then, using a single-node noise

benchmark, we killed processes until we reached a state

where the noise signal was substantially quieter. We then

re-enabled each process in isolation to assess its individual

contribution to single-node noise. This way, we reduced

the set of 735 processes to a handful of likely candidates

worthy of large-scale testing. The experiments in this section

were executed using cab’s default SMT configuration: one

hardware thread per core.

A. Single-node Noise

For our single-node noise assessment, we used the Fixed

Work Quantum (FWQ) benchmark2. FWQ records a series

of samples, where each sample records the time required to

execute a fixed amount of work. In order to run one task

per core we modified FWQ to run as an MPI job where

each task is bound to a core. The tasks only communicate

to synchronize their start time and to aggregate sample data

at the end. On a noiseless system, each sample time should

be identical. However, on a noisy system, some samples

take longer than normal to complete, because the application

process is interrupted to allow the system process to execute.

Figure 1 shows the FWQ results for several configu-

rations. The horizontal axis is the sample number, while

the vertical axis is the time taken for each sample in

milliseconds. All cores recorded samples in parallel, and

all are displayed individually on the graph. For this test,

FWQ was configured to record 30,000 samples each with a

nominal execution time of 6.8 milliseconds.

The far left graph in Figure 1 shows the noise signal

obtained on the system before we disabled any system

processes. On a noiseless system, we would expect each

core to plot a solid horizontal line at 6.8 milliseconds. All

sample points above this line indicate interference from

system processes. The next subfigure to the right, shows

the results obtained after we unmounted and unloaded

Lustre; unmounted NFS; and disabled slurmd, snmpd,

cerebrod, crond, and irqbalance. Although these

processes account for the majority of the observed noise,

there is at least one other process that we could not identify

contributing noise. Regardless, we consider this state to be

our “quiet” system. The last two plots, show the results

obtained when re-enabling just snmpd or just Lustre on

the quiet system. One can see that Lustre and snmpd each

produce distinct patterns in the data.

B. Noise at Scale

After identifying the processes that produce notable noise

on a single node, we investigated the impact of these

processes at scale. Even if a process appears to be noisy

on a single node, its effect on large-scale application per-

formance may not be significant if the process executes

synchronously across compute nodes [7]. Conversely, noise

that is not synchronous amplifies with scale, so that even

2https://asc.llnl.gov/sequoia/benchmarks/



Figure 1. Measuring noise on a single-node using FWQ with different system configurations.

small perturbations on a single node can result in significant

performance loss at scale.

For this test, we ran a benchmark that executes a series of

back-to-back calls to MPI_Barrier measuring the number

of processor cycles taken for each call. After completing all

iterations, the benchmark outputs the cycle counts recorded

by MPI rank zero.

We ran this benchmark using 16 processes per node

(PPN) for one million iterations at various node counts. We

used four different system configurations and computed the

average time per operation and the standard deviation of all

samples. The results are shown in Table I.

Table I
BARRIER STATISTICS FOR 1M OBSERVATIONS AND 16 PPN. LARGEST

RUN CONSISTS OF 1024X16 MPI TASKS. TIMES IN µs.

Nodes 64 128 256 512 1024

Baseline
Avg 16.27 16.82 20.74 35.34 52.40
Std 170.68 45.28 112.91 351.99 462.73

Quiet
Avg 13.28 16.09 18.43 22.57 28.27
Std 15.78 19.68 26.58 37.57 61.13

Lustre
Avg 13.31 16.26 18.38 23.20 29.12
Std 15.79 21.78 25.92 44.32 63.34

snmpd
Avg 13.44 16.39 21.73 25.17 38.67
Std 18.10 24.24 223.53 145.76 246.93

Our results show that the quiet system performs and

scales significantly better than the baseline system. At 1024

nodes, the average barrier cost is reduced by almost 50%

while the standard deviation is reduced by nearly an order

of magnitude. Also of note is the difference in scalability

when enabling Lustre and when enabling snmpd on the

quiet system. Lustre has a minimal impact on large-scale

performance, while snmpd has a significant effect. This type

of analysis can be used to determine which processes are

most detrimental to large-scale performance.

IV. USING SMT TO REDUCE SYSTEM INTERFERENCE

Simultaneous multithreading (SMT) is a processor hard-

ware feature that allows multiple threads to execute con-

currently within a multiple-issue, dynamically-scheduled

processor (core). This feature combines both thread-level

parallelism (TLP) and instruction-level parallelism (ILP) by

allowing multiple threads to issue independent instruction

streams that can be executed concurrently on the processor’s

issue slots. Each thread has its own set of registers, but it

shares most of the processor resources including execution

units and caches.

In this work, we leverage SMT to reduce system inter-

ference by utilizing hardware thread contexts for system

processing as opposed to application work. Since SMT

commodity processors are not designed for HPC, using all

hardware threads for a given application does not necessarily

render the best performance. With increasing concurrency,

an application can overwhelm a particular resource within

the processor, at which point, adding additional threads does

not help but instead may decrease performance. Similarly,

for many memory-bound applications, adding additional

threads puts more constraints on the already saturated mem-

ory system, which, again, can be detrimental to performance.

Note SMT can result in better application performance

by, for example, hiding long latency loads or other pipeline

stalls, but sometimes performance does not improve further

when a shared resource is over-utilized. At the same time one

resource is oversubscribed, other resources within the same

core may be idle. In this case a more diverse instruction mix

can still leverage the available resources.

Our approach strives to use additional thread contexts,

enabled by SMT, for system processing. As we show in

Section VIII, most of our HPC applications cannot leverage

the additional hardware threads effectively, but those appli-

cations show great improvements by enabling the threads

and leaving them idle to absorb system interference.



For all experiments in this work, we use Intel Xeon pro-

cessors, which use Intel’s Hyper-Threading technology [8] to

implement SMT. Hyper-Threading is an SMT-2 technology

providing two hardware threads per core. We describe our

SMT policies or configurations to mitigate noise in the next

section.

V. SMT CONFIGURATIONS

On the cab machine, Hyper-Threading is enabled in the

BIOS, but the secondary hardware threads are disabled at

boot time. SLURM is configured to allow re-enabling of

these threads if a user requests it for the duration of her job.

If the user does not request the additional threads, her job is

executed using a single hardware thread per core (16 CPUs

per node). We refer to this default configuration as Single-

Thread (ST). When Hyper-Threading is explicitly enabled

by a user (32 CPUs per node), we consider three additional

configurations. First, the job consists of at most one worker

(software thread or process) per core, i.e., it does not fully

utilize the additional hardware threads. The idea is to leave

these resources for the OS and other system processes. This

configuration is referred to as Hyper-Thread (HT). Second,

the job utilizes as many workers as hardware threads. This

configuration is called HTcomp, since the hyper-threads are

used for application compute work. Last, we have HTbind

that is similar to HT except that HTbind explicitly binds each

application process or thread to a hardware thread. Table II

summarizes all four configurations.

Table II
SMT CONFIGURATIONS.

ST SMT-1 Don’t use more workers than cores
HT SMT-2 Don’t use more workers than cores
HTcomp SMT-2 Use as many workers as HW threads
HTbind SMT-2 Like HT but bind workers to HW threads

The difference between HT and HTbind is simply in

how user processes and threads are bound to the underlying

hardware resources. HT uses the default process affinity

provided by SLURM, which divides the number of cores

by the number of processes and binds each process to the

core subset. In this way, a process is bound to a core or a

set of cores but threads within a process are not bound and

may migrate among the resources assigned to the process.

HTbind uses more strict affinity by binding each process

to a single CPU for MPI-only applications and by binding

each thread to a single CPU for MPI+OpenMP applications.

The goal of HTbind is to avoid possible migrations by the

OS. We should also mention that SLURM’s default affinity

policy is used for the other two configurations: ST and

HTcomp.

We employ the SMT configurations above to assess the

impact on application performance when using the additional

hardware threads provided by Hyper-Threading for system

processing. We start by quantifying the benefits of HT

over ST on collective, synchronous operations. Later, in the

context of the application analysis, we address an important

question: should we use the hyper-threads for application

work instead of system processing? As we show in Sec-

tion VIII, this is application dependent, with some unable

to take advantage of them, others always benefiting, and the

rest showing a small performance increase from HTcomp

that quickly diminishes as scale increases, at which point HT

and HTbind provide substantial performance improvements.

VI. FASTER AND REPEATABLE COLLECTIVE

OPERATIONS

In this section we demonstrate that the performance of

globally synchronous collective operations can be dramati-

cally improved at scale using SMT. We use Allreduce and

Barrier operations although we focus more on the former

since the impact is similar for both. As both Allreduce and

Barrier are globally synchronous, if any process is slow to

start an operation, all processes are delayed in completing

that operation.

Our micro-benchmark is outlined below and consists of

back-to-back Allreduce operations (sum of two doubles) for

a large number of iterations (at least 500K). The cost of

each operation in processor cycles is measured by MPI rank

zero. On a noiseless system, each operation should take the

same amount of time. On the other hand, if any process is

delayed by noise before starting an operation, the time of

that operation as measured by MPI rank zero is increased

by the cost of the delay. We note that noise may delay a

process during the middle of an operation, in which case,

the cost of that delay will register in either the current or

the next operation as measured by rank zero, but it will not

impact both.

for(i=0; i<iters; i++)

start = get_cycles()

MPI_Allreduce(..., MPI_COMM_WORLD)

stop = get_cycles()

sample[i] = stop - start

Figure 2 plots the cost in cycles of each Allreduce

operation. We employ 16 PPN over multiple node counts

resulting in 256 to 16,384 MPI tasks. The ST configurations

on the top clearly show that the execution time of each

operation varies significantly from run to run due to noise. In

fact, some operations were subject to extreme noise events

and measured many orders of magnitude higher than normal,

so for clarity, we do not show those that take more than 20

million cycles. Furthermore, as demonstrated in the related

literature, as we increase the number of MPI processes from

64(nodes)x16(PPN) to 1024x16 the effect of noise increases

dramatically.

Unlike ST, the secondary thread of execution in the HT

configurations (bottom graphs) absorbs most of the noise

resulting in repeatable and faster collectives. Although a few



Figure 2. Improvements of HT (bottom) over ST (top) for Allreduce
operations. In a noiseless system, a single horizontal band would be shown
toward the bottom of the graph–and nothing else. For ease of visualization,
we capped the Y-axis much lower than the max cycles incurred by ST runs.

data points still show some variability, there is a dramatic

improvement over the default configuration.

Since Figure 2 does not capture all data points (y-

axis capped), we turn to the histograms in Figure 3. We

classify every Allreduce operation into bins according to

their (logarithmic) elapsed cycles and for each bin we show

the cost of its Allreduce operations relative to the total cost

across all data points. For example, on 1024 nodes with

HT (bottom right histogram), about 70% of the total cycles

was spent on Allreduce operations that took less than 10
5.2

cycles. Contrasting this configuration with ST, only about

30% of the cycles fell under this limit.

In an ideal system without noise, there would only be one

bar occupying 100% of the cycles (y-axis) pegged at the

first bin from the left (x-axis). As the top histograms show,

as scale increases, the cycles spent on Allreduce operations

without noise (shortest cycles) diminishes rapidly. In con-

trast, HT, even at a high number of processes (1024x16),

spends most of the Allreduce cycles on operations that are

close to the minimum time.

We also include the Barrier statistics in Table III collected

using 16 PPN. The standard deviation (Std) shows the

improvements with HT. For reference, we transferred the

results for the “quiet” system from Section III-B, in which

we disabled numerous system processes known to cause

significant noise. Note that the average (Avg) HT case

performs as well as the quiet system, but more importantly

in the HT case, all of the noisy system processes are still

0
2
0

4
0

6
0

8
0

1
0
0

ST

64 nodes

ST

256 nodes

ST

1024 nodes

4.2 5.2 6.2 7.2 8.2

0
2
0

4
0

6
0

8
0

1
0
0

HT

4.2 5.2 6.2 7.2 8.2

HT

4.2 5.2 6.2 7.2 8.2

HT

Logarithm base 10 of elapsed cycles

C
o
s
t 
o
f 
o
p
e
ra

ti
o
n
 (

%
)

Figure 3. Improvements of HT (bottom) over ST (top) for Allreduce.
Y-axis shows the cost of Allreduce operations relative to the total cost
across all observations (500K), which are binned according to their elapsed
processor cycles.

running. In fact, HT achieves a lower standard deviation than

even the quiet system, presumably because it absorbs noise

from additional processes that were still active on the quiet

system.

Table III
BARRIER STATISTICS FOR 500K OBSERVATIONS AND 16 PPN. LARGEST

RUN CONSISTS OF 1024X16 MPI TASKS. TIMES IN µs.

Nodes 16 64 256 1024

ST

Min 4.80 5.66 6.78 5.78
Avg 10.41 32.29 25.05 71.20
Max 16,007.10 29,956.87 24,070.32 30,428.81
Std 66.92 474.65 233.16 333.30

HT

Min 4.80 5.11 7.03 7.97
Avg 9.89 13.38 18.82 28.28
Max 921.92 5,220.44 2,458.86 7,871.85
Std 3.09 10.23 15.76 35.22

Quiet
Avg N/A 13.28 18.43 28.27
Std N/A 15.78 26.58 61.13

This analysis shows that synchronization operations

clearly benefit from SMT by leveraging the additional hard-

ware threads provided by HT to absorb system noise. An

important remaining question is whether it is better for the

application to use the additional SMT hardware threads for

application work or whether it is better to leave those threads

available for system processes. We address this question

next.



VII. APPLICATION SUITE

We provide an empirical study of mitigating system noise

with SMT on a representative suite of HPC applications.

Our codes include four MPI production applications and

four MPI+OpenMP mini-applications from the CORAL

benchmark suite3, which represent U.S. Department of En-

ergy (DOE) workloads and technical requirements used to

procure three 100+ Petaflop/s computers. The applications

represent diverse physics and application areas including

hydrodynamics simulations, nuclear reactor criticality, and

laser plasma interaction.

A. miniFE

miniFE is an approximation to an unstructured implicit

finite element or finite volume application in a few thousand

lines. miniFE’s main kernel assembles a sparse linear system

from the steady-state conduction equation. The resulting sys-

tem is solved using an un-preconditioned conjugate-gradient

solver resulting in two main communication patterns of a

27-point halo exchange and MPI AllReduce operations [9].

B. AMG2013

AMG2013 is an algebraic multigrid benchmark applica-

tion derived directly from the BoomerAMG solver in the

Hypre linear solvers library [10]. The default Laplace-type

problem is built from an unstructured grid with various

jumps and anisotropy in one part. AMG2013’s dominate

message patterns include Allreduce operations and small and

medium point-to-point messages.

C. LULESH

LULESH is a Lagrangian explicit hydrodynamics applica-

tion that solves the Sedov problem on a staggered grid mesh.

It has numerical algorithms, data motion requirements, and

a programming style that are similar to complex, production

applications. LULESH is used for DOE co-design activi-

ties and as a machine procurement benchmark. On node

LULESH is a mix of memory-bound and compute-bound

kernels [11], while between nodes it requires three halo ex-

changes per timestep that are overlapped with computation.

LULESH performs one optional AllReduce per timestep.

Without this AllReduce, the code runs correctly, but requires

more timesteps to complete a given amount of simulated

time.

D. BLAST

BLAST is an explicit, arbitrary-order, finite-element-

based hydrodynamics application. For our study we use a

higher order problem and a partially assembled CG solve

that is more compute intense than LULESH and miniFE

and results in the entire code being compute bound [12].

Similar to LULESH, BLAST uses both halo exchanges

and AllReduce operations as its primary communication

patterns.

3https://asc.llnl.gov/CORAL-benchmarks/

E. Ardra

Ardra is a discrete ordinates (Sn) neutron transport code

used for various engineering problems. For this paper, we

used a reactor criticality eigenvalue problem. The main

communication pattern in Ardra is small-message wavefront

sweeps that occur concurrently from all corners (four in

2D and eight in 3D) of the mesh. A smaller portion of

its messaging occurs in a multi-grid solver with similar

properties to AMG [13].

F. Mercury

Mercury is a Monte Carlo particle (neutrons, gamma rays

and charged particle) transport code. In our experiments

we used a Godiva and Water problem, which looks at

the criticality of a uranium mass in water. Mercury uses

small and medium point-to-point messages to communicate

particles to neighboring parts of the mesh. It also uses

frequent AllReduce operations to test for completion of all

particles [14].

G. UMT

UMT is a deterministic transport (Sn) mini-application.

It solves 3D non-linear radiation transport calculations on

an unstructured grid. UMT uses both threads and MPI

to increase available parallelism and scalability. Its main

communication patterns are large point-to-point messages

to its nearest neighbors and medium size Allreduce opera-

tions [15].

H. pF3D

pF3D simulates laser-plasma interactions in National Ig-

nition Facility (NIF) experiments. Our test problem is rep-

resentative of production laser-plasma simulations, but with

I/O turned off to increase problem turnaround. pF3D has

three messaging patterns: 6-point halo, AllReduce, and 2D

FFT. However, the large messages sent in the 2D FFT

dominates message passing time [16].

VIII. APPLICATION SCALABILITY AND

REPRODUCIBILITY

In this section we investigate how the SMT configura-

tions described in Section V impact the performance and

reproducibility of our applications. All of the results include

at least five runs for each configuration. The experiment

configurations are shown in Table IV.

Because of space constraints, we only focus on those

experiments that demonstrate the most important trade-

offs of using SMT and those that highlight the properties

that make each application different from the others. In

addition, because of the large experimental space (including

eight codes, one or two inputs per code, four to six node

counts, one or two PPN, four policies, and multiple runs per

configuration) and the limited time on the cab production

machine, we ran only a few data points for the HTbind



Table IV
EACH EXPERIMENT CONFIGURATION WAS EXECUTED ON MULTIPLE

NODES RANGING FROM 8 TO 1024. TPP STANDS FOR OPENMP
THREADS PER MPI PROCESS. ARDRA, BLAST, MERCURY, AND PF3D
ARE MPI APPLICATIONS, ALL OTHERS ARE MPI+OPENMP. BECAUSE

OF THE SIMILARITIES BETWEEN HT AND HTBIND FOR ARDRA,
MERCURY, AND PF3D, WE RAN THE HT CONFIGURATION ONLY.

App Size PPN TPP SMT

miniFE
264x256x256
per node

2
8 ST,HT,HTbind

16 HTcomp

16
1 ST,HT,HTbind
2 HTcomp

AMG2013
12x24x12
per process

2
8 ST,HT,HTbind

16 HTcomp

16
1 ST,HT,HTbind
2 HTcomp

Ardra
200
per task

16
NA

ST,HT
32 HTcomp

LULESH

108,000
per node

4
4 ST,HT,HTbind
8 HTcomp

864,000
per node

4
4 ST,HT,HTbind
8 HTcomp

LULESH
Fixed

108,000
per node

4
4 ST,HT,HTbind
8 HTcomp

864,000
per node

4
4 ST,HT,HTbind
8 HTcomp

BLAST

147,456
per node

16
NA

ST,HT,HTbind
32 HTcomp

589,824
per node

16
NA

ST,HT,HTbind
32 HTcomp

Mercury
15,000
per process

16
NA

ST,HT
32 HTcomp

UMT
12x12x12
per process

16
1 ST,HT,HTbind
2 HTcomp

pF3D
128x192x16
per process

16
NA

ST,HT
32 HTcomp

policy for Ardra, Mercury, and pF3D. The reason being

that HT and HTbind are similar for these applications as

explained in Section VIII-B.

Based on our analysis as explained later in this section,

we group applications into three categories that represent

the correlations between application characteristics and their

response to our SMT strategy. These groupings are: mem-

ory bandwidth bound applications, compute-intense small

message applications with small messages and/or frequent

synchronization operations, and compute-intense large mes-

sage applications with few or insignificant synchronization

operations.

We employ two types of plots. In the scaling plots we

vary the number of nodes and MPI processes, and each

data point represents the average of all the runs made for

that experimental configuration. We use box-and-whisker

plots (box plots) to represent the variation of performance

between runs. In a box plot the main box represents the first

(bottom) and third (top) quartiles with the median drawn as

a horizontal line inside the box. The vertical dashed lines

are the whiskers and represent the minimum and maximum

values excluding outliers, which are represented by single

data points.

0
2

4
6

8
1

0
1

2

Workers
S

p
e

e
d

u
p

1 2 4 8 16 32

●

●

●

●
● ● ● ●

● miniFE

BLAST

Figure 4. Single-node strong scaling of miniFE and BLAST.

A. Memory Bandwidth Bound Applications

AMG, miniFE, and Ardra are all memory bandwidth

bound applications. Figure 4 shows the performance of

miniFE when strong scaled on node. Typical of memory

bandwidth bound applications, miniFE scales well for small

core counts and then its performance is flat. The flattening

occurs due to on-node memory bandwidth being saturated.

Therefore, these applications never benefit from using hyper-

threads for compute (HTcomp) and sometimes their perfor-

mance degrades.

Table IV shows the problem sizes and configurations run

for each application. For miniFE and AMG we used two

configurations, 2 MPI processes per node (1 process per

socket, 8 OpenMP threads) and 16 processes per node (1

process per core). For both codes we used the suggested

problem sizes from the applications websites and ran weak

scaling tests. For AMG, we used the default Laplace type

problem. Ardra ran an eigenvalue reactor criticality problem

using 16 and 32 MPI tasks per node.

As shown in Figure 5, the scaling of both configurations

of miniFE and the 16 PPN version of AMG is similar. Ardra

scales somewhat worse than the other two applications from

16 to 128 nodes. Our first observation is that using the hyper-

threads for compute (HTcomp) decreases performance for all

three applications. Also, when comparing HT and HTbind to

ST, enabling the hyper-threads for system processing never

hurts and sometimes helps. For all applications, we make

this comparison to determine the costs and benefits of our

SMT approach.



16 64 256 1024

● ●

●

●

●

ST
HT
HTbind
HTcomp

0
2

0
4

0
6

0
8

0

(a) miniFE 2 PPN

16 64 256 1024

● ●

●

●

●

ST
HT
HTbind
HTcomp

0
2

0
4

0
6

0
8

0

(b) miniFE 16 PPN

16 64 256 1024

●

●
●

●

●

ST
HT
HTbind
HTcomp

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

(c) AMG 16 PPN

16 32 128

●

●
●

●

ST
HT
HTcomp

0
2

0
4

0
6

0

(d) Ardra 16/32 PPN

A
ve

ra
g
e
 e

xe
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Nodes

Figure 5. miniFE, AMG2013, and Ardra performance scaling. Additional hardware threads for compute decrease performance.

●
● ●

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

20

40

60

80

(a) miniFE−2

●

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

20

40

60

80

(b) miniFE−16

●

●

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

1

2

3

4

5

(c) AMG−16
S

T

H
T

H
T

c
o
m

p

0

10

20

30

40

50

60

(d) Ardra−16/32

Figure 6. miniFE (2 and 16 PPN), AMG2013 (16 PPN), and Ardra (16/32
PPN) execution time (secs) variability across multiple runs. miniFE and
AMG experiments executed on 1024 nodes and Ardra experiments executed
on 128 nodes.

While for all three applications HT and HTbind improve

performance at scale, the benefit is larger for AMG and

Ardra. The timed sections of AMG and miniFE are iterative

solvers that perform Allreduces each iteration. miniFE with

its large problem size spends most of its time computing on

node. In contrast, AMG, with a smaller problem size and

an algorithm that results in multiple smaller grids, performs

relatively more frequent Allreduces that consume more of

its runtime. Therefore, AMG sees a larger gain from HT

and HTbind than miniFE. Ardra, which sends the smallest

messages of the three applications, shows an even larger

performance gain from our HT policy. Its 15% runtime

reduction at 128 nodes is the largest of all applications at

that scale and larger than AMG and miniFE at 1024 nodes.

We also measured the performance variation between

runs as shown in the box plots of Figure 6. Even at the

largest scale of 1024 nodes, miniFE exhibits reproducible

performance and does not seem to be affected by noise.

It is important to note, however, that miniFE scales poorly

(see Figure 5). In weak-scaling mode, perfect scaling with

no overhead for additional nodes would result in a flat

horizontal line.

In contrast to miniFE, AMG and Ardra are affected by

system noise as demonstrated by the taller box plots in

Figure 6. The impact is different for the two applications.

For AMG the fastest ST runs are as fast as HT, but the ST

runs have significant run-to-run variation. In contrast, all the

Ardra HT runs are faster than ST, but there is less run-to-run

variation of the ST runs compared to AMG.

B. Compute-intense Small Message Applications

LULESH, BLAST, and Mercury, all send smaller mes-

sages of 10KB or less and when strong scaled in single-

node experiments can take advantage of all computational

resources including hyper-threads. Figure 4 shows single-

node strong scaling for BLAST, which is typical of these

applications. Performance improves almost linearly up to at

least half the cores, and continues to improve, though slower,

with additional resources and hyper-threads.

When scaled up these applications all have a cross-over

point of how to achieve the best performance with SMT.

Figure 7 shows application scalability. While the exact cross-

over point varies from less than 16 nodes for LULESH and

Mercury to between 16 and 64 nodes for BLAST the trend

is the same. At small scale using hyper-threads for compute

(HTcomp) results in the best runtime. Then, at larger scale

using hyper-threads to mitigate noise (HT or HTbind) is

best. In addition, the gains from HT or HTbind increase

with scale.

Performance gains at scale with HT/HTbind vary from

20% for Mercury at 256 nodes to 2.4x for the smaller

BLAST problem at 1024 nodes. For LULESH and BLAST,

which we ran with two problem sizes, the smaller prob-

lem sizes showed a greater performance improvement. An

example of this is shown in Figure 7, where BLAST’s

larger problem size had a 1.5x speedup. When using HT

or HTBind the smaller LULESH problem size was 1.44x



16 64 256 1024

●
●

● ●

●

ST
HT
HTbind
HTcomp

0
5

1
0

1
5

2
0

(a) LULESH Allreduce 4 PPN

16 64 256 1024

● ●

●

●

●

ST
HT
HTbind
HTcomp

0
5

1
0

1
5

2
0

2
5

(b) BLAST Small 16/32 PPN

16 64 256 1024

●
●

●

●

●

ST
HT
HTbind
HTcomp

0
2

0
4

0
6

0

(c) BLAST Medium 16/32 PPN

8 16 32 64 128 256

●
●

●

●

●

●

●

ST
HT
HTcomp

0
2

0
4

0
6

0
8

0

(d) Mercury 16/32 PPN

A
ve

ra
g
e
 e

xe
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Nodes

Figure 7. LULESH, BLAST, and Mercury performance scaling. HT and HTbind achieve the best performance at medium and large scale; HTcomp is
best for a small number of nodes.

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

5

10

15

20

(a) LULESH−All

●

●

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

5

10

15

20

(b) LULESH−Fix

●

●

S
T

H
T

H
T

b
in

d

H
T

c
o
m

p

0

5

10

15

20

25

30

(c) BLAST

●

S
T

H
T

H
T

c
o
m

p

0

20

40

60

80

(d) Mercury

Figure 8. LULESH-Allreduce, LULESH-Fixed, BLAST (small problem
size), and Mercury execution time (secs) variability across multiple runs.
LULESH and BLAST experiments executed on 1024 nodes and Mercury
experiments executed on 64 nodes.

faster compared to 1.07x with the large size. The larger

speedups for the smaller problem sizes show that mitigating

system noise, while important across problem sizes, is even

more important when strong scaling. It is worth mentioning

that our problem sizes are representative of complex multi-

physics simulations where one component uses a fraction of

the memory to leave space for other types of physics.

Figure 8 shows the run-to-run performance variability.

For all applications HT improves runtime and performance

variability. However, only for LULESH (2 versions, de-

scribed later in this section), the only MPI+OpenMP code

in this group, is HTBind better than HT. This is because

with HT, SLURM binds each process (4 PPN) to 4 cores,

allowing the 4 threads per process to migrate within these

cores. HTbind, on the other hand, binds each thread to 1

hardware thread per core. For applications with 16 PPN

there is little difference between HT and HTbind because the

former allows a process to migrate only within two hardware

threads of a core.

In addition to our other tests, we ran LULESH using two

code variants. The first was the default LULESH version.

For the second, we modified the code to run using a fixed

time step, which we refer to as LULESH Fixed. In the

fixed variant, we remove the single Allreduce from the code

without impacting correctness. Since Allreduce is sensitive

to noise, we employ LULESH Fixed to analyze the impact

that Allreduce has within an application. It is important

to note that LULESH posts sends and receives as soon

as possible to allow overlapping of communication and

computation.

In Figures 8a-b, we show LULESH results for the largest

runs, where noise is most pronounced. For the ST con-

figuration, the fixed time step improves performance and

reduces the impact of noise (smaller performance variability)

relative to the Allreduce variant. These results show the

performance degradation system noise can cause when an

Allreduce operation is executed every two hundredths of

a second. When hyper-threads (HT or HTBind) are used

to mitigate noise LULESH with the Allreduce has sim-

ilar performance as LULESH Fixed. Thus, by using our

SMT strategy, algorithmic changes are not as important for

scalability and performance. This detail is important, since

modifying existing algorithms is complex and the Allreduce

in LULESH allows larger timesteps to be taken resulting

in faster time to solution. Finally, it is worth noting that

even codes without globally synchronous communication,

like LULESH Fixed, can benefit from our SMT approach to

mitigate noise.

C. Compute-intense Large Message Applications

Similar to the applications in the previous section, UMT

and pF3D have single-node profiles where performance

increases with thread count and HTcomp. These gains were

larger than the previous applications–pF3D with HTcomp

increased performance by 20% on an 8-node job. In addition,

UMT and pF3D differ from the previous two groups in their



0
5
0

1
0
0

2
0
0

3
0
0

Nodes

A
ve

ra
g
e
 e

xe
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

8 16 32 64 128 512

●

●
●

●

●

●

●

ST

HT

HTcomp

(a) UMT performance scaling for 16 PPN.

0
1
0

2
0

3
0

4
0

5
0

6
0

Nodes

A
ve

ra
g
e
 e

xe
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

16 64 256 1024

●
●

●

●

●

ST

HT

HTcomp

(b) pF3D performance scaling for 16 PPN.

S
T

H
T

H
T

c
o
m

p

0

10

20

30

40

64 Nodes

S
T

H
T

H
T

c
o
m

p

0

10

20

30

40

256 Nodes

E
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
)

(c) pF3D execution time variability.

Figure 9. UMT and pF3D performance scaling and execution time variability.

messaging patterns. Both applications send large messages

with the average point-to-point message in UMT larger than

150KB and its most frequent Allreduce operations being

about 1KB or 5KB in size. Most of pF3D’s messages were

all-to-all messages of sizes 12KB and 48KB on 64-task sub-

communicators.

Figures 9a and 9b show the scaling performance of both

applications. They show the same trend: HTcomp is best at

all scales. For pF3D, however, the performance gap between

HTcomp and HT starts to close at larger scale. For UMT, HT

is slightly faster than ST, but pF3D shows no improvement

from HT likely due to having only one collective operation

per timestep. We expect at large enough scale there would

be a cross-over point for UMT (similar to the previous group

of applications), but we only had 1024 nodes to test on.

Figure 9c shows that pF3D is still impacted by noise at

large scale and that HT does not reduce it. For this appli-

cation, with minimal globally synchronous communication

and large messages, HT does help performance relative to ST

though it does not reduce noise. The source of noise has been

documented in previous work [16]. UMT and pF3D, two

compute intense applications with large messages, demon-

strate that utilizing hyper-threads for system processing is

beneficial relative to ST, but for these applications it is best

to use hyper-threads as extra computation engines.

D. General Findings and Recommendations

Overall, enabling hyper-threads for system processing

results in better performance and less noise across a wide

range of scientific applications. This approach never reduced

performance and we often observed significant gains, espe-

cially at scale. However, the impact of hyper-threads varies

with application characteristics and scale.

For the memory-bound applications in this study (AMG,

miniFE, and Ardra) turning on hyper-threads and not using

them–from an application’s perspective–was always best.

System processes can use the hyper-threads to avoid ap-

plication interference. For these applications using hyper-

threads for extra compute resulted in worse performance

than the single-threaded configuration. For the compute-

intense large message applications (UMT and pF3D) using

hyper-threads for extra compute was best regardless of scale.

For these applications turning on hyper-threads and not using

them had a small, but noticeable positive effect over the

single-threaded configuration. For the compute-intense small

message applications (LULESH, BLAST and Mercury), it

was best to use hyper-threads for extra compute only at

small scale, while applications at medium and large scales

benefited the most by leaving the additional threads for

mitigating noise.

Based on our results, we recommend that computer cen-

ters enable hyper-threads and bind application processes and

threads, especially for large-scale jobs that are most suscepti-

ble to noise. However, care should be taken to educate users

about the positives and negatives of the additional resources

and how to use them effectively. For example, OpenMP us-

ing all available CPUs can result in worse performance with

Hyper-Threading enabled than Hyper-Threading disabled. In

this case, a user may need to specify an appropriate number

of threads when Hyper-Threading is enabled.

IX. RELATED LITERATURE

Leadership supercomputing systems, such as LLNL’s Se-

quoia, are designed from the ground-up to impose minimal

noise and to provide high scalability using techniques in-

cluding a light-weight OS [17], [18] and hardware resource

isolation between the operating system and applications.

Isolation approaches include Cray’s core specialization [19]

and the 17th core in IBM Blue Gene/Q [20]. While effective,

these specially-built systems are quite expensive, and a

majority of clusters are built from noisy but less costly

commodity components. Commodity clusters are attractive

because they are inexpensive, both in hardware and software,

and they provide a full-featured OS (Linux) that is widely

used and maintained by the technical community. Since the

components of a commodity cluster were not designed for



high-performance computing, however, system noise limits

the performance of applications at scale.

Many researchers have identified and characterized

sources of noise and the associated impact on applications.

These studies cover a wide range including analyzing noise

through benchmarks, modeling, and simulation, and study-

ing different sources of noise based on their frequency and

duration characteristics [2], [21]–[27]. Fewer research stud-

ies, however, focus on mitigating noise [3], [7], [19], [28],

[29]. Co-scheduling of system services has demonstrated

significant improvements reducing noise although it requires

a global clock and changes to the operating system. Other

solutions are tailored to specific sources of noise resulting

in one-off solutions that become obsolete when operating

systems change.

The work by De et al. [28] is the closest to ours.

The authors investigate the use of SMT to mitigate noise

by changing Linux scheduling policies and priorities and

isolating CPUs from kernel threads and interrupts. In their

study, a micro-benchmark is used to evaluate the impact of

their policies using simulation and a real cluster of eight

nodes. The authors show substantial reductions of noise

under the assumption that applications would run on a single

thread per core. Our work is different in several ways:

our methodology does not require changes to the OS or

the application, we focus on real workloads from the U.S.

Department of Energy, our experiments are done on real

hardware at scale, and we analyze the tradeoff of using

SMT for system processing versus application work. As

we demonstrated, there is a class of applications that can

leverage the additional hardware threads.

The work we present in this paper focuses on mitigating

system noise on commodity clusters, which are systems that

leverage the investments of a ubiquitous and continuously

maintained OS. It relies on simultaneous multithreading,

a pervasive architectural feature in modern processors, by

leveraging SMT hardware threads for system processing. A

key differentiator of this work with other noise mitigation

studies is simplicity: our approach does not require changes

to the OS or to applications. Moreover, we analyze the

tradeoff of using hardware threads for system processing

versus application work on real applications, on a real

system at scale. Unlike core specialization where a core or a

subset of cores is dedicated to the OS, our approach allows

an application to use all the cores on a node.

X. SUMMARY AND CONCLUSIONS

Despite significant advances in reducing system noise,

scientific applications running on production, commodity

clusters today continue to suffer the effects of noise on scal-

ability and performance. In this work, we leverage SMT to

move system processing off the critical path and demonstrate

prominent improvements on the performance of a diverse set

of scientific applications. We also show substantially higher

scalability and performance reproducibility of synchronous

operations. This study addresses the tradeoff of using the

additional hardware resources provided by SMT for appli-

cation work as opposed to system processing. In many cases,

especially at scale, an application cannot take advantage of

the additional hardware threads and, furthermore, trying to

do so results in performance loss. The operations resulting

from system processing, on the other hand, can co-exist with

application work on the same core. In addition, the benefits

of our approach require no changes to either the OS or

the application. Finally, we correlate the impact of SMT

to the characteristics of applications providing guidance to

system and application developers on how to best leverage

this feature.

Future work includes analyzing the influence of synchro-

nization frequency, compute-to-communication ratio, and

global versus neighborhood collectives on system noise.

ACKNOWLEDGMENTS

We would like to thank our LLNL colleagues Trent

D’Hooge and Mark Grondona for their support with the

TOSS system software and Steve Langer and Louis Howell

for their help with pF3D and Mercury. We also thank the

anonymous reviewers for their encouraging and detailed

feedback. Prepared by LLNL under Contract DE-AC52-

07NA27344. LLNL-CONF-669795.

REFERENCES

[1] T. B. Tabe, J. P. Hardwick, and Q. F. Stout, “Statistical
analysis of communication time on the IBM SP2,” Computing
Science and Statistics, vol. 27, pp. 347–351, 1995.

[2] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the
missing supercomputer performance: Achieving optimal per-
formance on the 8,192 processors of ASCI Q,” in Conference
on Supercomputing, ser. SC’03. Phoenix, AZ: ACM/IEEE,
Nov. 2003.

[3] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier,
R. Blackmore, P. Caffrey, B. Maskell, P. Tomlinson, and
M. Roberts, “Improving the scalability of parallel jobs by
adding parallel awareness to the operating system,” in Con-
ference on Supercomputing, ser. SC’03. Phoenix, AZ:
ACM/IEEE, Nov. 2003.

[4] E. Rosenthal, E. A. León, and A. T. Moody, “Mitigating
system noise with simultaneous multi-threading,” in Inter-
national Conference for High Performance Computing, Net-
working, Storage and Analysis; Research Poster, ser. SC’13.
Denver, CO: ACM/IEEE, Nov. 2013.

[5] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple
Linux utility for resource management,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2003, vol.
2862.



[6] Y. Georgiou and M. Hautreux, “Evaluating scalability and
efficiency of the resource and job management system on
large HPC clusters,” in Job Scheduling Strategies for Par-
allel Processing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2013, vol. 7698.

[7] T. Jones, “Linux kernel co-scheduling for bulk synchronous
parallel applications,” in International Workshop on Runtime
and Operating Systems for Supercomputers, ser. ROSS’11,
Tucson, AZ, May 2011.

[8] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton, “Hyper-threading technology
architecture and microarchitecture,” Intel Technology Journal,
vol. 6, no. 1, Feb. 2002.

[9] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willen-
bring, H. C. Edwards, A. Williams, M. Rajan, E. R. Keiter,
H. K. Thornquist, and R. W. Numrich, “Improving perfor-
mance via mini-applications,” Sandia National Laboratories,
Tech. Rep. SAND2009-5574, Sep. 2009.

[10] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang,
“Multigrid smoothers for ultraparallel computing,” SIAM
Journal on Scientific Computing, vol. 33, no. 5, Oct. 2011.

[11] I. Karlin, J. McGraw, J. Keasler, and B. Still, “Tuning
the LULESH mini-app for current and future hardware,”
in Nuclear Explosive Code Development Conference, ser.
NECDC’12, Livermore, CA, Oct. 2012.

[12] S. Langer, I. Karlin, V. Dobrev, M. Stowell, and M. Kumbera,
“Performance analysis and optimization for BLAST, a high
order finite element hydro code,” in Nuclear Explosive Code
Development Conference, ser. NECDC’14, Los Alamos, NM,
Oct. 2014.

[13] U. Hannebutte and P. Brown, “Ardra: Scalable parallel code
system to perform neutron–and radiation–transport calcula-
tions,” Lawrence Livermore National Laboratory, Tech. Rep.
UCRL-TB-132078, 1999.

[14] P. S. Brantley, S. A. Dawson, M. S. McKinley, M. J. O’Brien,
D. E. Stevens, B. R. Beck, E. D. Jurgenson, C. A. Ebbers,
and J. M. Hall, “Recent advances in the Mercury Monte
Carlo particle transport code,” in International Conference on
Mathematics and Computational Methods Applied to Nuclear
Science & Engineering, ser. M&C’13, Sun Valley, ID, May
2013.

[15] P. F. Nowak and M. K. Nemanic, “Radiation transport calcula-
tions on unstructured grids using a spatially decomposed and
threaded algorithm,” in International Conference on Mathe-
matics and Computation, Reactor Physics and Environmental
Analysis in Nuclear Applications, Madrid, Spain, Sep. 1999.

[16] S. H. Langer, A. Bhatele, and C. H. Still, “pF3D simulations
of laser-plasma interactions in National Ignition Facility ex-
periments,” Computing in Science & Engineering, vol. 16,
no. 6, pp. 42–50, Nov 2014.

[17] R. Riesen, R. Brightwell, P. G. Bridges, T. Hudson, A. B.
Maccabe, P. M. Widener, and K. Ferreira, “Designing and
implementing lightweight kernels for capability computing,”
Concurrency and Computation: Practice and Experience,
vol. 21, no. 6, pp. 793–817, Apr. 2009.

[18] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wis-
niewski, “Experiences with a lightweight supercomputer ker-
nel: Lessons learned from Blue Gene’s CNK,” in Interna-
tional Conference for High Performance Computing, Net-
working, Storage and Analysis, ser. SC’10. New Orleans,
LA: ACM/IEEE, Nov. 2010.

[19] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Lever-
aging the Cray Linux Environment core specialization feature
to realize MPI asynchronous progress on Cray XE systems,”
in Cray User Group, ser. CUG’12, Stuttgart, Germany, Apr.
2012.

[20] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield,
K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich,
R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle, N. Chist, and
C. Kim, “The IBM Blue Gene/Q compute chip,” IEEE Micro,
vol. 32, no. 2, pp. 48–60, 2012.

[21] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The influ-
ence of operating systems on the performance of collective
operations at extreme scale,” in International Conference on
Cluster Computing, ser. Cluster’06. IEEE, Sep. 2006.

[22] P. De, R. Kothari, and V. Mann, “Identifying sources of
operating system jitter through fine-grained kernel instrumen-
tation,” in International Conference on Cluster Computing,
ser. Cluster’07. Austin, TX: IEEE, Sep. 2007.

[23] K. B. Ferreira, R. Brightwell, and P. G. Bridges, “Character-
izing application sensitivity to OS interference using kernel-
level noise injection,” in International Conference for High
Performance Computing, Networking, Storage and Analysis,
ser. SC’08. Austin, TX: IEEE/ACM, Nov. 2008.

[24] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti,
“The impact of system design parameters on application
noise sensitivity,” in International Conference on Cluster
Computing, ser. Cluster’10. Heraklion, Greece: IEEE, Sep.
2010.

[25] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing
the influence of system noise on large-scale applications by
simulation,” in International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ser.
SC’10. New Orleans, LA: ACM/IEEE, Nov. 2010.

[26] D. Doerfler, M. Epperson, J. Ogden, C. T. Vaughan, and
M. Rajan, “Application performance on the Tri-Lab Linux
capacity cluster-TLCC,” International Journal of Distributed
Systems and Technologies, vol. 1, no. 2, Apr. 2010.

[27] S. Seelam, L. Fong, A. Tantawi, J. Lewars, J. Divirgilio, and
K. Gildea, “Extreme scale computing: Modeling the impact
of system noise in multicore clustered systems,” in Interna-
tional Symposium on Parallel & Distributed Processing, ser.
IPDPS’10. Atlanta, GA: IEEE, Apr. 2010.

[28] P. De, V. Mann, and U. Mittal, “Handling OS jitter on multi-
core multithreaded systems,” in International Symposium on
Parallel & Distributed Processing, ser. IPDPS’09. Rome,
Italy: IEEE, May 2009.

[29] A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla,
and M. Valero, “A quantitative analysis of OS noise,” in
International Parallel & Distributed Processing Symposium,
ser. IPDPS’11. Anchorage, AK: IEEE, May 2011.


